Dezeen and MINI Frontiers: RCA graduate Julian Melchiorri says the synthetic biological leaf he developed, which absorbs water and carbon dioxide to produce oxygen just like a plant, could enable long-distance space travel. “Plants don’t grow in zero gravity,” explains Melchiorri. “NASA is researching different ways to produce oxygen for long-distance space journeys to let us live in space. This material could allow us t0 explore space much further than we can now.”
Melchiorri’s Silk Leaf project, which he developed as part of the Royal College of Art‘s Innovation Design Engineering course in collaboration with Tufts University silk lab, consists of chloroplasts suspended in a matrix made out of silk protein. “The material is extracted directly from the fibres of silk,” Melchiorri explains. “This material has an amazing property of stabilising molecules. I extracted chloroplasts from plant cells and placed them inside this silk protein. As an outcome I have the first photosynthetic material that is living and breathing as a leaf does.”
Like the leaves of a plant, all Melchiorri’s Silk Leaf needs to produce oxygen is light and a small amount of water.